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We establish that a mode-coupling approximation for the dynamics of multi-
component systems obeying Smoluchowski dynamics preserves a subtle yet
fundamental property: the partial density correlation functions are, considered
as matrices, completely monotone, i.e., they can exactly be written as superpo-
sitions of decaying exponentials only. This statement holds, no matter what
further approximations are needed to calculate the theory’s coupling param-
eters. The long-time limit of these functions fulfills a maximum property, and an
iteration scheme for its numerical determination is given. We also show the
existence of a unique solution to the equations of motion for which power series
both for short times and small frequencies exist, the latter except at special
points where ergodic-to-nonergodic transitions occur. These transitions are
bifurcations that are proven to be of the cuspoid family.
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1. INTRODUCTION

Density correlation functions are convenient tools to characterize the
dynamics of liquids or disordered systems. They can be measured in exper-
iment, e.g., by inelastic neutron scattering, dynamic light scattering in
colloidal systems, or can be determined from computer simulation tech-
niques. On the other hand, one can calculate them from theory, but in the
case of strongly interacting systems, one typically has to invoke certain



approximations in order to obtain the desired results. There are, however,
some general properties of such correlation functions, directly related to
the time-evolution operator of the system. It is a nontrivial point to show
that all approximations involved in deriving a theory’s equations of motion
preserve these general properties.
One example are colloidal suspensions obeying Smoluchowski dynam-

ics. One knows from general grounds that in such systems the matrices of
partial correlation functions are completely monotone, i.e., they can be
written as a superposition of decaying exponentials only. An approximative
theory calculating such quantities should aim to reproduce these properties,
since they are direct consequences of the structure of the time-evolution
operator. However, the concept of complete monotonicity is quite subtle,
and it is therefore likely that a given approximation prevents the approxi-
mative solutions from sharing this feature with the complete solution.
At high densities, colloidal systems are known to undergo glassy

dynamics, provided crystallization can be suppressed for a sufficiently long
time. In these cases the so-called mode-coupling theory of the glass transi-
tion (MCT) has been successful in describing much of the experimental
facts. For one-component, i.e., monodisperse, systems the theory has been
proven (1) to give results for the density correlation functions, which indeed
reproduce the above mentioned features. However, little is known about
multi-component, or polydisperse, mixtures. Recently, glassy dynamics in
a binary colloidal suspension has been studied, (2) challenging detailed
comparisons of the MCT for mixtures with experiment.
MCT tries to describe the motion of particles on a microscopic scale

by an approximation of the frequency- and wavenumber-dependent viscos-
ity in terms of density-fluctuation products. Such an approach comes about
naturally if one considers the potential stresses to be built up by the density
fluctuations of the liquid itself. The resulting equations contain a feedback
mechanism induced by the slowing down of relaxations due to the so-called
cage effect. It has been shown that these equations allow for an ideal glass
state, given the interactions are strong enough, e.g., at high densities. The
ideal glass is characterized by a nonvanishing long-time limit of density
correlation functions which corresponds to an elastic scattering contribu-
tion in the dynamical structure factor. In the ‘‘phase diagram,’’ there occur
critical manifolds, referred to as glass-transition singularities, that separate
ergodic liquid from ideal glass states and can also extend into the glass
state. Upon approaching a critical point, the long-time limit of the density
correlators, also called the glass form factor or the Edwards-Anderson
parameter of the system, changes discontinuously. This holds for both
liquid-glass transitions, where the change is from zero to some nonzero
value, as well as glass-glass transitions.
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Close to the transition, analytic formulas providing asymptotic solu-
tions of the MCT equations of motion have been derived. Typically, there
occur two time fractals with nontrivial exponents, and two time scales,
accompanied by corresponding scaling laws. On these time scales the
dynamics of the glass former is also referred to as structural relaxation. The
asymptotic predictions as well as numerical solutions of the full MCT
equations for model systems have been extensively tested against experi-
mental data; for a detailed discussion of the glass-transition scenario, the
reader is referred to a recent review. (3)

The aim of this paper is to generalize from the case of one-component
systems to that of multi-component mixtures proofs of the basic properties
of MCT solutions. In particular, we show that the structural relaxation can
be represented as a continuous superposition of decaying exponentials, i.e.,
that the density correlation functions indeed are completely monotone.
Furthermore, the long-time limits can be obtained by a simple iteration
procedure that does not involve the solution of the complete dynamical
equations. An investigation of this iteration brings out glass transitions in
general to be bifurcations of the cuspoid type. In addition, a short-time
expansion of the density correlation functions is demonstrated to be con-
vergent for short times. Similarly, a power series for small frequencies is
shown to exist at non-critical points. On the contrary, such a power series
ceases to exist at critical points.
The paper is organized as follows: In Section 2, we will introduce the

equations of motion for the mixtures considered, together with some basic
properties and the MCT approximation. Section 3 presents a proof that the
MCT equations of motion have a uniquely determined solution which is
completely monotone. In Section 4, the long-time limit of these solutions
will be discussed, and in Section 5, the existence of power series solutions
both in the time and frequency domain is shown, the latter by proving first
that all moments of the correlation functions are finite at regular points.
A comment on the behavior at critical points is given in Section 6.
Finally, Section 7 offers some conclusions.

2. EQUATIONS OF MOTION

2.1. General Properties

We consider a classical system enclosed in a box of volume V with
a total number of particles N=; s

n=1 Nn, consisting of s different species
with number concentrations xn=Nn/N. The particles are supposed to be
structureless, i.e., they do not possess any internal degrees of freedom, and
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are thus fully described by their positions, momenta, and species index. The
variables

nn(qF )=N−1/2 C
Nn

i=1
exp(iqF · rF ni ) (1)

are then the fluctuating densities of species n to wave vector qF. Here, rF ni
denotes the position of the ith particle of species n. The simplest statistical
information on structural dynamics that can be extracted from a multi-
component supercooled liquid is the matrix of density correlation functions

Fmn(q, t)=Onm(qF, t) | nn(qF )P . (2)

Here, the brackets O · | ·P denote the Kubo product with OA | BP=
OdAg dBP, where dA=A−OAP, and O · · ·P indicates canonical averaging.
Since Fmn(q, t) is the spatial Fourier transform of a function that is real,
translational-invariant and isotropic, it is itself real and depends only on
the magnitude of the wave vector q=|qF |. The time evolution is given by
nm(qF, t)=exp[iSt] nm(qF ). For a liquid obeying Newtonian dynamics, the
operator S is just the Liouville operator, which is Hermitian with respect
to the Kubo product. In this case, time inversion symmetry implies the
density correlation matrix to be symmetric with respect to interchange of
the species indices.
Let us focus on colloidal liquids, and S denote the (adjoint)

Smoluchowski operator. There, time inversion symmetry is broken expli-
citly, but still the symmetry Fmn(q, t)=Fnm(q, t) holds, although this has to
be proven separately. (4)

One then has the spectral decomposition exp[iSt]=> exp(−ct) dPc,
with eigenvalues c fulfilling c \ 0, and Pc denoting the projector onto the
corresponding linear subspace. This immediately leads to the following
representation:

Fmn(q, t)=F e−ct damn, q(c), (3)

where the measure a is concentrated on the nonnegative real axis, is sym-
metric in m, n, and positive: daq(c)R 0, i.e., for any set of complex numbers
yn, n=1,..., s, the measure y

g
m damn, q(c) yn is positive. Summation over

repeated indices shall be implied here and throughout this paper. A func-
tion having these properties is called completely monotone. In particular,
Fmn(q, t) is a positive definite matrix for all times, and for all l the time
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derivatives (−1) l “ ltFmn(q, t) are positive definite. The equivalence of these
formulations is the result of the Bernstein theorem. (5, 6)

Let us also introduce the Laplace transformFmn(q, z)=i >.0 eiztFmn(q, t) dt.
Then the representation Eq. (3) shows that

Fmn(q, z)=F
−1
z+ic

damn, q(c) (4)

is (i) analytic for z ¥ C0 iR−, (ii) obeys Fmn(q, z)g=−Fmn(q, −zg), (iii)
limzQ i. Fmn(q, z)=0, and (iv) Re Fmn(q, z)R 0 for Re z < 0. In reverse,
these four properties are enough in order to guarantee a representation
in the form of Eq. (3) (ref. 5, Section 5, Theorem 2.6). The spectrum
F'mn(q, w)=Im Fmn(q, z=w+i0) then is a superposition of Lorentzians

F'mn(q, w)=F
c

w2+c2
damn, q(c), (5)

which is positive as is already implied by the passivity of the system. One
also has that the long-time limit of the correlators exists. If this quantity is
nonvanishing,

Fmn(q)=Fmn(q, tQ.) ] 0, (6)

it is called the glass form factor or nonergodicity parameter, and the spec-
trum exhibits an elastic contribution pFmn(q) d(w). Passivity requires
Fmn(q)R 0 which is consistent with Eq. (3).
Let us stress again that the above properties of density autocorrelation

functions are direct consequences of the eigenvalue spectrum of the
Smoluchowski operator; in general, they hold for any system whose
time-evolution operator has nonnegative, real eigenvalues only.

2.2. Mode-Coupling Theory

Mode-coupling theory starts from the formally exact representation of
the density correlation matrix in terms of a memory kernel matrix. In the
Laplace domain this results in the matrix equation

F(q, z)=−[zS−1(q)−S−1(q)[iy(q)+M(q, z)]−1 S−1(q)]−1 . (7)

SinceM(q, z)Q 0 for zQ., one can identify the matrices S and y with the
short time expansion of the time density correlation function, F(q, t)=
S(q)−y−1(q) t+O(t2). The matrix S(q) is called the structure factor, and
from the definition Eq. (2) one checks that for every q it is symmetric, real
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and positive definite. The same properties hold for the matrix y(q) charac-
terizing the initial decay of F(q). We shall throughout this paper discuss
the above equation for q ] 0 and therefore assume both S(q) and y(q) to be
invertible, which is the generic case as long as all number concentrations
are nonvanishing.
The Zwanzig–Mori formalism gives an explicit expression for the

memory matrix in terms of so-called fluctuating forces. We shall only be
concerned with its general structure, which in the time domain is

Mmn(q, t)=OXm(qF ) |RŒ(t) Xn(qF )P . (8)

Explicit expressions for the fluctuating forces Xm(qF ) and the reduced
resolvent RŒ(t) can be worked out. (7, 8) The mode-coupling approximation
consists of projecting the fluctuating forces onto pair modes ns(kF) ny(pF )
using an appropriate projection operator P2 and factorizing four-particle
correlations, (9, 10)

Ons(kF) ny(pF ) |RŒ(t) nsŒ(kF Œ) nyŒ(pF Œ)P % FssŒ(kF, t) FyyŒ(pF, t) dkFkF ŒdpFpF Œ . (9)

In order to avoid overcounting we restrict the pair modes to kF > pF, kF Œ > pF Œ
with some order relation. In particular, for t=0 this implies an approxi-
mate normalization and suggests to introduce the approximate projector

P2 % C
kF > pF

|ns(kF) ny(pF )P S
−1
ssŒ(k) S

−1
yyŒ (p)OnsŒ(kF) nyŒ(pF )| . (10)

With this projector, the MCT approximation is (11, 12)

MMCT
mn (q, t)=C

kF > pF

OXm(qF ) | nsŒ(kF) nyŒ(pF )P S
−1
sŒs(k) S

−1
yŒy (p)

×Fss̄(k, t) Fyȳ(p, t) S
−1
s̄s̄ Œ(k) S

−1
ȳ ȳ Œ(p)Ons̄ Œ(kF) nȳ Œ(pF ) | Xn(qF )P .

(11)

It is useful to write this in a more transparent form by introducing super-
indices a=(s, y), ā=(s̄, ȳ):

Mmn(q, t)=C
kF > pF

Vma(qF, kFpF )[F(k, t) é F(p, t)]aā Vnā(qF, kFpF )g , (12)

where é denotes the tensor product in the space of species indices, and the
‘‘vertex’’ reads

Vm, a=(sy)(qF, kFpF )=OXm(qF ) | nsŒ(kF) nyŒ(pF )P S
−1
sŒs(k) S

−1
yŒy (p). (13)
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The tensor product of positive definite matrices again represents a positive
definite object in the corresponding product space. This can easily be seen
transforming both matrices to their eigenbasis and noting that the tensor
product again has positive eigenvalues only. Thus it follows from Eq. (12)
that Mmn(q, t) is positive definite, provided that the density correlation
matrix Fmn(q, t) is positive definite for all wave vectors. More generally, if
we write

Fmn[F, G]=
1
2 C
kF > pF

Vma[F é G+G é F]aā Vg
nā , (14)

we see that F[F, G] is symmetric in F and G, and is positive definite for
every q, provided both FR 0 and GR 0 for every k and p. In particular,
we haveM(t)=F[F(t), F(t)].
Let us mention that the vertex can be evaluated and expressed in terms

of the static structure factor matrix and the three-particle static correlation
functions. Usually the structure factor is known only approximately. Knowl-
edge of triple correlations is often lacking entirely, although in principle
they can be determined from computer simulation. (13) However, the prop-
erty of M(q, t) being a positive definite quantity is a direct consequence of
the MCT approximation structure, and is independent of the approxima-
tions made in order to evaluate the vertex in Eq. (13). Note in addition that
one can in principle include a regular contribution to the memory kernel,
M reg(q, z), accounting for transient dynamics not captured in the MCT
approximation, e.g., hydrodynamic interactions and the like. Under the
assumption of such a term being completely monotone, the following dis-
cussion remains valid. That there indeed exists a completely monotone
solution to Eqs. (7) and (12) shall be proven in the following section.

3. COMPLETELY MONOTONE SOLUTIONS

The proof of existence and uniqueness of a completely monotone
solution to the MCT equations proceeds in two steps. One first constructs
an iteration in the Laplace domain that guarantees complete monotonicity.
Second, convergence is shown within the time-domain formulation.

3.1. Complete Monotonicity

We denote the space of s×s matrices, where s is the number of species,
by A. It is clear that A, equipped with standard matrix multiplication and
Hermitean scalar product, is indeed a Ca algebra. For elements aq ¥A, we
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form vectors a=(aq)q=1,..., M ¥AM. In the following, we shall assume wave
vectors to be discretized to some finite set q=1,..., M, such that all matri-
ces appearing in the equations of motion are elements of AM. One easily
checks thatAM with all matrix operators overA defined elementwise in q,
and equipped with the maximum norm ||a||=maxq ||aq ||, can again be
turned into a Ca algebra. An element a ¥AM shall be called positive,
aR 0, if aq R 0 for every q; similarly, we use aP 0, or aR b, the latter
meaning a−bR 0. Note that the norm preserves ordering, i.e., for aR b
we also have ||a|| \ ||b||.
Now let us construct a sequence of functions F (n)(t), n=0, 1, 2,... as

follows: Assume F (n)(t) to be completely monotone. It is then clear from
Eq. (12) that M (n)(t)=F[F (n)(t)] inherits this property. In particular,
its Laplace transform has the properties (i) to (iv) of Eq. (4). But then
F (n+1)(z) as defined by

F (n+1)(z)=−[zS−1−S−1[iy+M(n)(z)]−1 S−1]−1 (15)

again fulfills properties (i) to (iv). This is easily checked for (i) to (iii).
Property (iv) can be shown in two steps. First, define K(z) by

[iy+M(n)(z)] K(z)=−1. (16)

One then has, suppressing superscripts (n) for brevity,

(ReM(z))(Re K(z))−(y+ImM(z))(Im K(z))=−1, (17a)

(ReM(z))(Im K(z))+(y+ImM(z))(Re K(z))=0. (17b)

Using the second equation, one can eliminate Im K(z) in the first and
find for Re z < 0, where ReM(z)R 0, that Re K(z)Q 0. But we have

[zS−1+S−1K(z) S−1] F(z)=−1, (18)

and along the same lines one derives with Re K(z)Q 0 for Re z < 0 the
desired result, Re F(z)R 0.
Thus, Eq. (15) together with some completely monotone starting

point, F (0)(t)=exp[−(Sy)−1t] S, say, defines a sequence of completely
monotone functions F (n)(t), normalized to F(t=0)=S. Let us complete
the proof of existence of a uniquely determined, completely monotone
solution to Eqs. (7) and (12) by showing that the thus constructed sequence
converges uniformly to some F(t).
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3.2. Existence and Uniqueness

The equation of motion in the time domain can be obtained from
Eq. (7) which yields

yḞ(t)+S−1F(t)+(M f Ḟ)(t)=0. (19)

Here, (f f g)(t)=> t0 f(t−tŒ) g(tŒ) dtŒ denotes the time-domain convolu-
tion. The density correlation matrix is subjected to the initial condition
F(t=0)=S, and the memory kernel M(t) is given in terms of the density
correlators, Eq. (12).
This equation of motion can be rewritten as an integral equation

similar to the Picard equation,

yF(t)=yS+F
t

0
[M(tŒ) S−S−1F(tŒ)−M(tŒ) F(t− tŒ)] dtŒ , (20)

such that the standard proof of local existence and uniqueness can be
applied. In particular, the Picard iteration corresponding to the Laplace-
domain iteration defined in the previous subsection is

F (n+1)(t)=S+F
t

0
K[F (n)(tŒ), F (n)(t− tŒ), F (n+1)(tŒ)] dtŒ , (21)

where

K[x, y, z]=y−1(F[x] S−(S−1+F[y]) z). (22)

The convergence of this iteration is proven as in the one-component case, (1)

using a Lipschitz constant L for K. If we restrict t to some finite time
interval, 0 [ t [ T, and the verticesV to some finite closed domain, we get,
since ||F (n)(t)|| [ ||S|| ensures a finite closed domain for x, y, z,

||K(x1, y1, z1)−K(x2, y2, z2)|| [ L(||x1−x2 ||+||y1−y2 ||+||z1−z2 ||) . (23)

This allows to construct a sequenceXn(t)=||F (n+1)(t)−F (n)(t)||/||S|| obeying
the inequalities Xn(t) [ 1,

Xn(t) [ L F
t

0
(2Xn−1(tŒ)+Xn(tŒ)) dtŒ , (24)

and from there, the proof of ref. 1 applies. Thus there exists for each fixed
finite T a unique solution in the interval 0 [ t [ T <.. Furthermore, this
solution depends smoothly on the verticesV as control parameters for any
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fixed finite time interval. Note that this theorem cannot be extended to
infinite time intervals.
Together with the preceding paragraph, we have proven the existence

of a unique solution to Eq. (7) that it is the limit of a convergent sequence
of completely monotone functions. It is therefore itself completely mono-
tone, due to the continuity theorem for Laplace transforms. (14)

4. GLASS FORM FACTORS

In this section we shall prove that the glass form factor F=F(tQ.)
can be obtained without solving the integro-differential equation (19).
Since the Laplace-transform exhibits a pole at zero frequency, F(z)=

−F/z+{smooth}, Eq. (7) implies that the form factor is a solution of

F=S−[S−1+N]−1 . (25)

Here, Nmn(q)=Mmn(q, tQ.) denotes the long time limit of the memory
kernel matrix which is, according to Eqs. (12) and (14), a quadratic func-
tional of the form factor, N=F[F, F].
In general the coupled equations (25) and (14) have several solutions,

e.g., F=0 trivially satisfies the equations. Since we have shown in the last
section that the solution of the mode-coupling equation is symmetric and
completely monotone, one can restrict the search to the positive symmetric
solutions of the above equations. In this space, the solution corresponding
to the glass form factor shall be shown to be maximal with respect to the
semi-ordering R defined onAM.

4.1. Maximum Fixed Point

The mode-coupling functional preserves the semi-ordering. Since
F[F, G]R 0 is satisfied for F, GR 0, and F is symmetric in F and G, we
have N[F]−N[G]=F[F+G, F−G]R 0, if F−GR 0. Thus one finds
N[F]RN[G] if FR G. It is easy to see that inversion reverses the
semi-ordering, i.e., for FR GP 0 one has G−1−F−1R 0.
Equations (25) and (14) suggest to introduce a continuous mapping

for a set of positive symmetric matrices F by

I[F]=S−[S−1+N[F]]−1 . (26)

It is clear from the preceding paragraphs that I[F] is again positive and
symmetric and preserves the semi-ordering, I[F]RI[G] if FR G. By
induction one shows that the sequence F (n+1)=I[F(n)], n=0, 1,...,
starting with F (0)=SP 0 is monotone and bounded, SP F (n)R F (n+1)R 0,
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n=1, 2,..., and thus converges to some fixed point Fg R 0 which is a
solution of Eqs. (25) and (14).
Suppose now there is some positive definite, symmetric fixed point Fgg.

If we introduce the mapping FW F̃ by F=Fgg+F̃, this maps F=Fgg to
F̃=0, and SP 0 to S̃=S−Fgg P 0. The mapping is covariant in the
sense that F̃=Ĩ[F̃] holds iff F=I[F], provided one sets Ĩ[F̃]=S̃−
[S̃−1+Ñ[F̃]]−1 with

Ñ[F̃]=N[F]−N[Fgg]. (27)

It is clear that the mapping Ĩ[F̃] exhibits the properties of I discussed
above. Thus the sequence F̃ (n)=F(n)−Fgg with F (n) as above converges to
some positive definite fixed point F̃g. By continuity of all maps involved,
F̃g=Fg−Fgg R 0, and thus Fg R Fgg for any fixed point Fgg. We can
summarize that Fg is a maximum fixed point in the sense that it is larger
than all other positive definite, symmetric solutions of Eqs. (25) and (14)
with respect to the semi-ordering introduced above. The iteration scheme
defined by I converges to this maximum fixed point, provided the iteration
is started with the upper limit S.

4.2. Uniqueness and Eigenvalue

Denote byk the linearization of Ĩ and thus S̃F̃S̃,k[f]=2S̃F̃[F, f] S̃,
FR 0, such that I[F+f]−I[F]=k[f]+O(f2). It is clear that k is a
positive linear map on AM in the sense that k[f]R 0 for all fR 0. For
the one-component case considered in ref. 1, k corresponds to a matrix Aqp,
positive (but not positive definite) in the sense that Aqp \ 0 for all q and p.
From the physical picture of the MCT approximation it is reasonable to
assume that A has no invariant subspaces, and thus is an irreducible
matrix. Then the Perron–Frobenius theorem (15) can be invoked to prove the
existence of a non-degenerate, positive eigenvector z corresponding to the
spectral radius of A.
In the present case, the generalization of this result is guaranteed since

the equivalent of the Perron–Frobenius theorem holds for positive linear
maps on Ca algebras. (16) The physical interpretation again leads to the
assumption that k is irreducible. Then in particular, the mapping k has
a non-degenerate maximum eigenvalue r, to which there corresponds a
uniquely determined eigenvector zP 0. For all other eigenvalues l, there
holds |l| [ r. For completeness, a proof of the general Perron–Frobenius
results as far as needed here is sketched in Appendix A.
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If we suppose r=1+d with some d > 0, we have, after the transfor-
mation IW Ĩ as defined above,

F̃[tz]R S−1k[tz] S−1=(1+d) S−1tzS−1 (28)

with some real t > 0. If we set F̂ (0)=tz and define a sequence F̂ (n) by
F̂ (n)=S−1F (n)S−1,F (n+1)=Ĩ[F (n)] for n=1, 2,..., we have S−SF̂ (1)SQ [S−1

+(1+d) F̂ (0)]−1. But there exists some e > 0 such that S−1+(1+d) F̂ (0)−
S−1(S−1−F̂ (0))−1 S−1=S−1+(1+d) F̂ (0)−S−1(S+SF̂ (0)S+...) S−1= d · F̂ (0)

+O(t2)P 0 for all 0 < t [ e, and one gets F̂ (1)P F̂ (0)P 0. From the
properties of Ĩ, it follows that SP Ĩ[F(n+1)]R Ĩ[F(n)]P 0. Thus the
sequence F̂ (n), n=0, 1,..., is monotone and bounded, and by continuity of
Ĩ converges to some fixed point F̃#. If we now choose Ĩ such that
Fgg=Fg is the maximum fixed point of I, F̃#P 0 implies the existence of
some fixed point F#P Fg of I. Thus, by contradiction, d > 0 cannot be
possible, and we conclude r [ 1, i.e., the maximum eigenvalue of k is
bounded by unity. The value of r depends on the control parameters V,
and thus one distinguishes regular points, r < 1, from the ‘‘critical’’ mani-
fold, where r=1. Let us note that Fg defined as the maximum fixed point
of Eq. (25) exhibits bifurcation at critical points, identified within MCT as
the ideal glass transition singularities. The non-degeneracy of r implies that
MCT describes glass transitions in multi-component colloidal systems as
bifurcations of the Aa type, according to the classification of Arnol’d. (17)

This in turn ensures that asymptotic solutions can be worked out in the
same spirit as for one-component systems, with the common case being the
dynamics close to a fold (A2) bifurcation. (18)

4.3. Long-Time Limit

Now, define a dynamical mapping FW F̃ similar to above by F(t)=
Fg+F̃(t). Here, Fg shall be the maximum fixed point of I. It is easy to see
that F̃ fulfills the same equations of motion as F, provided one maps
FW F̃ as discussed above.
Since F is a completely monotone function, the limit limtQ. F(t)=G

exists. The same also holds for F̃, and the mapping implies G=Fg+G̃,
thus GR Fg. On the other hand, all time-derivatives of completely mono-
tone functions must vanish for long times, “ntF(tQ.)Q 0. Therefore, one
can integrate the time-domain equations of motion, Eq. (7), to get
S−1G+N[G](G−S)=0, which is equivalent to Eq. (25). By this, G is a
fixed point of Eq. (25), and we have GQ Fg, from which one concludes
G=Fg.
Thus the maximum fixed point of Eq. (25) corresponds to the glass form

factor matrix of the mixture. In particular, we have explicitly generalized
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the iteration scheme of ref. 1 that allows to calculate the form factors
numerically without solving the full equations of motion, Eq. (7) or Eq. (19).
Also note that, with the above transformation, F̃(tQ.)Q 0.

5. POWER SERIES SOLUTIONS

Let us establish the existence of power series both for short times and,
at regular points, also for small frequencies. The latter follows from the fact
that all moments of F̃(t) and M̃(t) exist as long as the Perron–Frobenius
eigenvalue r < 1. The proofs are rather technical, but a direct physical
consequence of the results will be discussed in the next section.

5.1. Power Series for Short Times

Suppose there exists in the time-domain a power series for t < tg with
some nonzero tg > 0,

F(t)=C
.

n=0
(−t)n fn , (29)

and analogous for M(t), where mn=;n
k=0 F[fk, fn−k]. Then Eq. (19)

implies

fn+1=
1
n+1
5y−1S−1fn+y−1 C

n

k=1

k!(n−k)!
n!

mn−kfk6 , (30)

for n \ 1, with f0=S.
We prove by induction that

0 [ tng ||fn || [ ||f0 || (31)

for all n. Assuming the induction hypothesis, we have for n+1,

tn+1g ||fn+1 || [
tng ||f0 ||
n+1
5||y−1S−1||+||y−1|| C

n

k=1

k!(n−k)!
n!

||mn−k || t
n−k
g
6 . (32)

Since the functional F is continuous, we can estimate ||mn || [K
;n
k=0 ||fk || ||fn−k || [ (n+1) K ||f0 || with some constant K. Furthermore,

;n
k=1 k!(n−k+1)!/(n+1)! [;n

k=1 1/(n+1) [ 1, and thus the proposition
is proven for tg sufficiently small.
But then one can construct Cauchy sequences for Eq. (29),

||;k=nm (−t)n fk || [;k=n. ||f0 || (t/tg)n, m \ n, where the right-hand side
becomes arbitrarily small for |t| < tg as nQ.. Thus the power series,
Eq. (29), converges.

Completely Monotone Solutions of Mode-Coupling Theory 249



5.2. Existence of Moments

In the following, we restrict the discussion to regular points, such that
the spectral radius of the mapping k is less than unity, r=1−2e with some
e > 0, say. If one writes SM̃(t) S=(k+dk[F̃(t)])[F̃(t)], one has for long
times, t > t0 with some fixed t0, that dk becomes arbitrarily small as F̃Q 0,
dkQ ek. Thus one infers an upper bound for the memory kernel,

SM̃(t) SQ (1− e) F̃(t)+m(t), t > 0, (33)

with some arbitrary m(t)R 0 whose Laplace transform shall be analytic for
small |z|. For Im z > 0 and Re z=0, the equivalent inequality holds for the
Laplace-transformed quantities, and inserting into Eq. (7) yields

0Q −ieF̃(z)Q SyS−im(z)Q SyS−im(z=i0). (34)

This shows in particular that the zeroth moment of F(t), F0=>.0 F̃(t) dt
exists. Due to Eq. (34), we can, for any fixed T and d > 0, write
>T0 F̃(t) dtQ −i(1+d) F̃(z=i/T ln(1+d))Q (1+d)(SyS−im(z=i0))/e.
Explicitly, we have then

F0=SyS+SM0S <. . (35)

The existence of all other moments of F̃(t) and, from that, of M̃(t) shall be
shown by induction. We denote these moments by Fn,

Fn :=F
.

0
tnF̃(t) dt, (36)

and equivalently for M̃(t). To simplify notation, let us drop tildes in the
following.
First, we note that any F(t)R 0 monotone and continuous such that

>.0 tnF(t) dt is finite can be written for large times as

F(t)=
K(t)
tn+1
, tQ. , (37)

with some continuous K(t)R 0 satisfying K(t)Q 0 for tQ.. To see this,
write for t large, with C some constant, 0Q F(t) tn+1=CF(t) > tt/2 yn dyQ
C >.t/2 ynF(y) dy, where the right-hand side vanishes as tQ.. Since with
K(t)R 0, also ||K(t)|| and Z(t)=maxT > t ||K(T)|| are continuous, one can
further estimate

0 [ ||F(t)|| [
Z(t)
tn+1
, tQ. . (38a)
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For n=0, the bound can be improved. Write tF(t)Q F(t)/(ln t−
ln T0) > t ln tT0 ln T0 dyQ 1/(ln t− ln T0) >

t ln t
T0 ln T0 F(y) dy, with some T0 satisfying t >

T0 ln T0 > T0. From this, one gets F(t)(t ln t)QK(t) ln T0+> t ln tT0 ln T0 F(y) dy
Q C for long times. One concludes K(t)Q C/ln t, and specializing to
T0=ln t, one finds that the bound C can be made arbitrarily small, thus
giving with obvious renaming F(t)=K̃(t)/(t ln t) with K̃(tQ.)Q 0, or

0 [ ||F(t)|| [
Z̃(t)
t ln t

, tQ. , (38b)

with continuous Z̃(t)R 0 vanishing as tQ..
Using these expressions, one infers that the convolution (M f F)(t)

decays to zero faster than 1/tn+1 for long times,

(M f F)(t)=
Ẑ(t)
tn+1
, tQ. , (39)

where Ẑ(t)Q 0 for tQ., given that both M and F have the above
properties and finite nth moments. Write

||tn+1(M f F)(t)|| [ > tn+1 F t/2
0
M(tŒ) F(t− tŒ) dtŒ >

+> tn+1 F t/2
0
M(t−tŒ) F(tŒ) dtŒ > , (40)

and both terms on the right-hand side vanish for long times. To see this, let
us focus on the first term,

B(t) :=tn+1 >F t/2
0
M(tŒ) F(t− tŒ) dtŒ >

[ tn+1 ( max
t/2 [ T [ t

||F(T)||) 1C+F
t

T
||M(tŒ)|| dtŒ 2 , (41)

with some constantC. Now for n \ 1, we immediately have that > tT ||M(tŒ)|| dtŒ
is bounded to above by some constant, and Eq. (38a) gives B(t)Q Ĉ ·
Z(t)Q 0 for tQ.. Similarly, for n=0 one uses the improved bound of
Eq. (38b) together with > tT ||M(tŒ)|| dtŒ [ C/t to get B(t)Q C̃Z̃(t)/ln t (CŒ+
ln t)Q 0 as tQ., which completes the proof.
Now, suppose all moments of F(t) and M(t) up to n exist. It is clear,

that then also the moments of (M f F)(t) up to n exist. From Eqs. (19)
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and (33), we get eF(t)Q m(t)− ddt [S(M f F)(t)−SyF(t)], which can be
integrated to give, together with Eq. (39),

eFn+1 Q mn+1+(n+1) S(M f F)n−(n+1) SyFn . (42)

This implies the existence of both the (n+1)th moment of F(t) and of
M(t).

5.3. Power Series for Small Frequencies

Having proven the existence of all moments, we can proceed to estab-
lish a power series for F̃(z) and M̃(z) for small |z|. We show that the series

F(z)+Fg/z=C
.

n=0

iFn(iz)n

n!
(43)

converges for |z| < z0, with z0 > 0 a non-zero radius of convergence.
For the nth term in the power series, Eq. (43), there holds the inequality

zn0 ||Fn ||
n!

[
||F0 ||
(n+1)2

, n \ 1, (44)

which can be proven by induction. Taking norms on both sides of Eq. (42)
one obtains, together with ||SMkS|| [ ||Fk ||+||mk ||,

e ||Fn+1 || [ ||mn+1 ||+(n+1) C
n

k=0
(||Fk ||+||mk ||) ||S−1|| ||Fn−k ||+(n+1) ||Sy|| ||Fn || .

(45)

But m(z) is analytic for small |z|, so let us estimate ||mn || [ Ct
n
0n! with some

constant C > 0 and some t0 > 0. We also choose z0 such that z0t0 < 1/2, in
order to get from the induction hypothesis

e
zn+10 ||Fn+1 ||
(n+1)!

[ C(z0t0)n+1+
z0 ||F0 ||
(n+1)2
5||S−1|| C

n

k=0

1C(z0t0)k+
||F0 ||
(k+1)2
2+||Sy||6 (46a)

[
5C(z0t0)
(n+2)2

+
9z0 ||F0 ||
(n+2)2
5||S−1|| 12C+||F0 ||

p2

6
2+||Sy||6 [ e ||F0 ||

(n+2)2
, (46b)
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where we have used 2−n < 5/(n+2)2 and 1/(n+1)2 < 9/(n+2)2 and the
last inequality holds for small enough z0. From this, the convergence of the
power series of Eq. (43) follows. Consider Cauchy sequences for m \ n,
|z| < z0,

> C
m

k=n

iFk (iz)k

k!
> [ C

.

k=n

||F0 ||
(k+1)2

, (47)

where the right-hand side becomes arbitrarily small if n becomes large.

6. ZEROTH MOMENT AT CRITICAL POINTS

We now turn to critical points, given through the Perron–Frobenius
eigenvalue by r=1. Quantities referring to such a critical point will be
denoted by a superscript c. The results of Sections. 5.2 and 5.3 do not
apply in this case; on the contrary, the zeroth moment of F̃c(t) is found to
diverge.
Assume on the contrary Fc0 <., then also M

c
0 <.. But then

Fc0=SyS+SM
c
0S follows from the equations of motion. To the lineariza-

tion kc of SMc(t) S there belongs a positive left eigenvector êcP 0, such
that ;q, ab ê

c
q, ab(k

c[F])q, ab=;q, ab ê
c
q, abFq, ab=: tr(ê

cF). Since two positive
definite matrices can be simultaneously diagonalized, one has that the thus
defined trace of their product is positive. Thus we get tr(êc(SMc(t) S))=
tr(êcFc(t))+f(t) with some f(t) \ 0. Integrating both sides with respect
to t, this yields

tr(êcFc0) \ tr(ê
c(SyS))+tr(êcFc0)+C, (48)

where tr(êc(SyS)) > 0 generically. Here we have set C=>.0 f(t) dt \ 0 if
this integral exists, some arbitrary positive constant otherwise. This in turn
leads to a contradiction, tr(êcFc0) > tr(ê

cFc0), and it follows that F
c
0=., as

well asMc
0=..

The existence of all moments of F̃(t) at regular points together with a
finite radius of convergence for the frequency-domain power series on the
other hand implies the existence of a final exponential relaxation at such
points,

F(t)−Fg=O(e−c0t). (49)

This holds since Eq. (43) implies that the measure a in Eq. (3) has an atom
of mass Fg at c=0, is constant for 0 < c < c0, and has a point of increase
at c=c0. (14) Thus,

Fmn, q(t)=F
g
mn, q+F

.

c0

e−ct damn, q(c). (50)
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The result of this section shows that no such finite minimum relaxation rate
cc0 exists at critical points, thus F̃

c(t) does not decay exponentially.

7. CONCLUSION

We have shown that, for a multi-component colloidal mixture driven
by Smoluchowski dynamics, the mode-coupling theory of the glass transi-
tion (MCT) provides an approximation to the density correlators that pre-
serves the complete monotonicity imposed by the general structure of the
time-evolution operator. Thus, positivity of the spectra is guaranteed. Since
the correlation functions are superpositions of purely decaying exponentials
in the sense of Eq. (3), the frequently used term ‘‘structural relaxation’’
given to the dynamics close to a glass transition is justified. The glass form
factor was found to be determined by a maximum principle. It can be
evaluated by an iteration scheme whose linearization fulfills the preposi-
tions needed for a generalized Perron–Frobenius theorem under the natural
assumption that the system has no decoupling wave-vector subspaces. This
in turn ensures a non-degenerate maximum eigenvalue that was shown
to be smaller than, or equal to unity for all physical states. Thus within
the MCT of multi-component systems, the only possible glass-transition
singularities are bifurcations of type Aa, occurring at points where the
Perron–Frobenius eigenvalue equals unity.
The proofs presented here suggest numerical schemes for the solution

of the nonlinear equations of motion, that are stable in the sense that they
will converge to the uniquely defined, symmetric, completely monotone
solution. In particular, the glass form factor can be found without solving
the dynamical equations.
Typical solutions to the MCT equations appear in Fig. 1. We chose as

the simplest case a binary mixture of hard spheres. Then the state of the
system is determined by three numbers, which we take to be the total pack-
ing fraction, j=jA+jB, the diameter ratio d=dB/dA, and the packing
contribution of the second species, jB/j. Here, the species are labeled
with subscripts A and B, and ja=(pd

3
a/6)(Na/V) are the partial volumes

occupied by each species. To calculate the MCT vertex, Eq. (13), one needs
to know the static structure factor of the system, as well as static three-
particle correlation functions. For the latter, to our knowledge, no analytic
expressions are available, and thus we follow the commonly applied
approximation through two-particle correlations. (12) The former shall be
approximated using the well-known Percus–Yevick (PY) approximation to
the Ornstein–Zernike integral equation. Within this framework, ‘‘PY-
exact’’ solutionsare available. (19)Aswasalreadymentioned in connectionwith
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Fig. 1. Normalized correlation functions fab(q, t)=(S−1/2(q) F(q, t) S−1/2(q))ab for a binary
hard-sphere mixture with diameter ratio dB/dA=0.6, packing fraction of B-particles jB/j
=0.2, wave vector q=6.2/dA, calculated from Eq. (7); details see text. The labels 11, 12, and
22 indicate the three independent matrix elements, and labels a to e correspond to total
packing fractions j=0.518, 0.519, 0.5195, 0.52, and 0.525, respectively. Here, j=(pN/6V)
(xAd

3
A+xBd

3
B), with xa=Na/N being the number concentrations. The dashed horizontal lines

indicate the long-time limit for j=jc % 0.519608, and the dotted curves correspond to an
exponential decay as described in the text.

Eq. (13), the approximations involved in evaluating the vertex are of no
importance for the mathematical aspects of the solutions we wish to
demonstrate.
Figure 1 showsnormalized correlation functionsf(q, t)=S−1/2(q) F(q, t)

S−1/2(q) for a particular wave vector q=6.2/dA. They are numerical solu-
tions of Eq. (7) with yab(q)=1/(q2D

0
a) dab and D

0
a=0.005/Ra, on a grid of

100 wave vectors q=0.2,..., 39.8 with Dq=0.4. The size ratio and the
concentrations are kept fixed at (d, jB/j)=(0.6, 0.2), and the total
packing fraction is varied as indicated in the figure caption; a procedure
corresponding to what has been done in experiment. (2) Note that while the
two diagonal matrix elements are positive and monotonically decreasing
for all times t, both needs not be true in general for the off-diagonal ele-
ments. For comparison also shown is the suggested starting point of
Eq. (15), f (0)(t)=S−1/2 exp[−(Sy)−1t] S1/2, which is completely monotone
by construction. One notices a drastic slowing down in the relaxation of
the correlation functions towards their long-time limits. This demonstrates
the dynamics close to a critical point where the Perron–Frobenius eigen-
value r=1, which in this system occurs at jc % 0.519608 and which is the
concern of the asymptotic solutions to mode-coupling theory. The solu-
tions for the long-time limit at j=jc as determined from Eq. (25) are
included in the figure.
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Fig. 2. Eigenvalues e± (q, t) of f(q, t) from Fig. 1 for j=0.5195 (all other parameters as
given in Fig. 1) as functions of time t.

Complete monotonicity requires all eigenvalues of f(t) to be positive
for all t. To demonstrate that our numerical solution is in accordance with
this, we show in Fig. 2 the eigenvalues e± (t) as functions of time for a fixed
total packing fraction. One clearly recognizes the above statement to hold.
A power series in the time domain exists, and at regular points, i.e., for

vertices such that the Perron–Frobenius eigenvalue is smaller than unity,
also for small frequencies the power series has a nonzero radius of conver-
gence. This implies the existence of a final exponential relaxation with some
rate c0 > 0 at regular points. At a critical point, c

c
0=0 holds.

The mode-coupling theory for mixtures can also be applied to systems
with Newtonian, instead of stochastic, short-time dynamics, e.g., metallic
melts. Furthermore, a recent extension of MCT to molecular liquids that
treats each molecule as consisting of s constituent sites also leads to sub-
stantially the same equations. (20) Since in these cases, the representation of
Eq. (3) through decaying exponentials only will not be valid in general, the
proofs presented here cannot readily be applied. Work published for one-
component Newtonian systems (21) suggests that existence and uniqueness of
the solution, even if it will not be completely monotone, can nevertheless be
proven. This has, however, not been done so far.
It is an observation of both theory (22, 23) and computer experiment, (24)

that the different short-time behavior does not influence the dynamics at
sufficiently long times apart from an overall shift in time scale, given a
strong enough coupling such that MCT contributions are important. One
then expects the long-time limit of the Newtonian dynamics solutions to
exist and to be governed by Eq. (25). Note that the properties of this equa-
tion and its maximum fixed point do not depend on the short-time dynamics,
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nor do the commonly applied asymptotic formulas. Similarly, the predic-
tion of only Aa singularities as glass transitions will remain valid as long as
the linearization of Eq. (25) is irreducible. This can be expected unless some
special symmetry will introduce zero-couplings in the vertex, which in
principle can happen within the molecular site-site description of ref. 20.

APPENDIX A: PERRON THEOREM

Let us sketch here for completeness some results generalized from the
Perron–Frobenius theorem for irreducible matrices. For a proof of the
complete theorem for positive linear maps on Ca algebras, the reader is
referred to ref. 16.
As above, let AM denote the Ca algebra of M-component vectors

whose elements are s×s matrices over the complex numbers C. Consider
the positive linear map k, which maps the set of symmetric, real, positive
definite elementsAM

+ onto itself, k[a]R 0 for aR 0. k is called irreducible,
if there exists some positive, finite number n such that T[a]P 0 for aR 0
and

T[a]=(1+k)n [a]. (A1)

If k is irreducible, we have that k[a]P 0 if aP 0.
Now, define a mapping r: (AM

+ , C
s)Q R by

r(a, v)= min
1 [ q [M

(v | kq[a] v)
(v | aqv)

, (A2)

where q labels the elements of a ¥AM, a=(aq)q=1,..., M, and ( · | · ) is a scalar
product over C s. Furthermore, set r(a)=infv ¥ C

s r(a, v)=infv ¥ S
s r(a, v),

where S s denotes the s-dimensional unit sphere, and the latter equation
holds since r(a, lv) with l ¥ C is independent of l.
One immediately checks r(a) \ 0 and

k[a]R r(a) a. (A3)

However, r(a, v) is not continuous on (AM
+ , C

s). Let us define a set

B :={b; b=T[a], a ¥AM
+ , ||a||=1}. (A4)

Then, bP 0 for any b ¥B …AM
+ . Since r(b, v) is continuous on the closed

and compact set (B, S s), it assumes its minimum with respect to v. It
follows that on B, r(b) fulfills a maximum principle in the sense that it
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is the maximum R-number for which k[b]R r(b) b. Furthermore, for
a ¥AM

+ and b=T[a] ¥B we have T[k(a)−r(a) a]=k[b]−r(a) bP 0,
and by the maximum principle we get r(b) \ r(a).
Next define

r= sup
a ¥A

M
+

r(a). (A5)

Denote by I the unit element in AM, consisting of M unit matrices. Since
r(I) > 0, clearly r > 0. The supremum can be restricted to b ¥B since the
above inequality holds. But there, r(b) assumes its maximum, and thus r
attains the supremum for some extremal vector zP 0.
We continue by showing that r indeed is an eigenvalue of k and equal

to the spectral radius, and that the corresponding eigenvector z is unique,
i.e., the eigenvalue is non-degenerate.
Assume, k[z]−rzR 0 but not the null element. Then k[ẑ]−rẑP 0

with ẑ=T[z], but the maximum principle then implies r(ẑ) > r in contra-
diction to the definition of r. Thus, r is an eigenvalue of k. Suppose now,
there are two eigenvectors z, zŒ corresponding to this eigenvalue. We then
can find some l ¥ R such that lz−zŒR 0 but not strictly positive definite.
But this implies T[lz−zŒ]=(1+r)n (lz−zŒ)P 0, in contradiction to the
construction of l. Thus, the eigenvalue r is non-degenerate.
Now for any a ¥AM

+ , define the mapping

s[a]=(1/r) z−1/2k[z1/2az1/2] z−1/2 . (A6)

Since s[I]=I, ||s||=1. Suppose k[u]=au with some a ¥ C. Write
v=z−1/2uz−1/2, which gives s[v]=(a/r) v. But for any eigenvalue l of s,
we have |l| [ ||s||, and thus in particular |a| [ r. Therefore, r is the spectral
radius of k.
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